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Abstract
We propose a new application of the Gutzwiller trace formula formalism,
to give a compact expression for the semiclassical vacuum pair production
rate in quantum electrodynamics, for general inhomogeneous electromagnetic
background fields.

PACS numbers: 11.27.+d, 03.65.Sq

The Gutzwiller trace formula has found a wide variety of applications in theoretical and
mathematical physics [1–4]. Here we point out a new area where its language provides insight
and simplification to a difficult computational problem in relativistic quantum field theory.
Vacuum polarization effects in quantum electrodynamics (QED) predict that electron–positron
pairs can be produced from the vacuum in the presence of a classical electric field. This
remarkable phenomenon was predicted, and its rate estimated, for uniform fields in [5–7], but
has not been directly observed as the rate is tiny for accessible field strengths. It is conceivable
that sufficiently strong electric fields may be reached in x-ray free electron lasers [8], but such
fields have strong temporal and spatial inhomogeneities. Unfortunately, very little is known
about the rate when the background field has such general inhomogeneities. On the other hand,
in the approximation where the background electric field has a fixed direction and a magnitude
that varies in just one dimension, either spatial or temporal, one can use WKB-based techniques
[9–11]. A promising approach for going beyond this one-dimensional case is the ‘worldline
instanton’ method [12, 13], based on an instanton approximation to Feynman’s worldline path
integral formulation of QED [14]. Another related approach is a direct Monte Carlo evaluation
of the worldline form of the effective action [15]. In this note we propose a new approach to
this problem, based on a close connection between the worldline instanton approach and the
Gutzwiller trace formula [1–3]. This connection gives a well-defined computational strategy
for treating multi-dimensional inhomogeneities in the background electromagnetic field.

The technical problem is to compute the imaginary part of the effective action in the
classical electromagnetic background field, from which the vacuum pair production rate
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follows [6]: Pproduction = 1 − e−2Im� ≈ 2Im�. For example, for a constant electric field of
magnitude E , the leading weak field result (we consider scalar QED) is [5–7]

Im �

Vol
∼ e2E2

16π3
e− m2π

eE . (1)

The basis of our proposal is the worldline formalism of QED [14, 16, 17], in which the effective
action is expressed in terms of a quantum mechanical path integral in four-dimensional
Euclidean space, with paths xµ(τ) parametrized by proper time τ . This approach has led to
many beautiful advances in our understanding of perturbative scattering amplitudes [17], but
here we propose to use it to extract non-perturbative information. The effective action for a
scalar charged particle (charge e, mass m) in a Euclidean classical gauge background Aµ(x)

is the functional (Dµ = ∂µ + ieAµ is the covariant derivative)

�[A] = −tr ln
(−D2

µ + m2
)

=
∫ ∞

0

dT

T
e−m2T

∫
d4x(0)〈x(0)| e−T (−D2

µ)|x(0)〉

=
∫ ∞

0

dT

T
e−m2T

∫
d4x(0)

∫
x(T )=x(0)=x(0)

Dx exp

[
−

∫ T

0
dτ

(
ẋ2

µ

4
+ eAµẋµ

)]
. (2)

In the last line, the trace of the associated Euclidean propagation operator has been written as
a functional integral

∫
Dx over all closed Euclidean spacetime paths xµ(τ) that are periodic

(with period T) in the proper-time parameter τ [14]. We use the QED worldline path integral
normalization conventions of [17].

The strategy of the worldline instanton method [13] is to evaluate the quantum mechanical
path integral in (2) semiclassically [18], and then to evaluate each of the T and x(0) integrals
by steepest descents. These are precisely the steps in deriving the Gutzwiller trace formula
[1–3], although there one is concerned with a non-relativistic Schrödinger operator rather than
the Euclidean Klein–Gordon operator, an oscillatory amplitude eiS/h̄ rather than the Euclidean
form e−S , and the trace of the resolvent rather than the trace of the logarithm. Nevertheless,
despite these differences, in this note we show that the worldline instanton computation can
usefully be formulated in the language of the Gutzwiller trace formula.

The first step is to make a semiclassical approximation for the propagation kernel

K(x, x ′; T ) := 〈x| e−T (−D2
µ)|x ′〉 ≈ 1

(2π)2

√∣∣∣∣det

(
∂2R

∂x∂x ′

)∣∣∣∣ e−R(x,x ′;T ), (3)

where R(x, x ′; T ) is the Hamilton principal function for the classical trajectory from x to x ′

in four-dimensional Euclidean space, in the proper-time interval T. This classical trajectory is
obtained by solving the Euclidean classical equations of motion

ẍµ = 2eFµν(x)ẋν (µ, ν = 1, . . . , 4), (4)

where Fµν = ∂µAν − ∂νAµ is the background field strength. To evaluate the trace in (2)
we will need the diagonal propagation kernel K(x(0), x(0); T ), but for now we consider the
point-split propagation from x to x ′. The classical equations of motion (4) are those for a
charged particle moving in an inhomogeneous electromagnetic field Fµν(x), so the ‘energy’
is conserved on a classical trajectory: E = 1

4 ẋ2
µ = constant.

The next step is to perform the T integral by steepest descents. The critical point of
the exponential factor arises when ∂R

∂T
= −m2. This has a natural classical interpretation in

terms of the Legendre transformation between the Hamilton principal function R(x, x ′; T )

(expressed in terms of the total time elapsed along the trajectory) and the action S(x, x ′;E)
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(expressed in terms of the constant energy of the trajectory): R(x, x ′; T ) = S(x, x ′;E)−ET .
It follows that ∂R

∂T
= −E and ∂S

∂E
= T . Thus, the critical point Tc of the T integral occurs when

E = m2, so that∫ ∞

0

dT

T
e−m2T K(x, x ′; T ) ≈ 1

(2π)2Tc

√∣∣∣∣det

(
∂2R

∂x∂x ′

)∣∣∣∣
Tc

√
2π∣∣ ∂2R

∂T 2

∣∣
Tc

e−S(x,x ′;m2), (5)

up to a possible phase that we discuss later. The two prefactor contributions combine in a
simple way if we consider coordinates x

(0)
‖ along the classical trajectory and x

(0)
⊥ transverse to

the trajectory. Then [1–3]

det
(

∂2R
∂x∂x ′

)
∂2R
∂T 2

∣∣∣∣∣
Tc

= 1

ẋ‖ẋ ′
‖

det

(
∂2S(x, x ′;m2)

∂x⊥∂x ′
⊥

)
. (6)

The final step is the coincident limit x → x ′ = x(0), and trace over x(0). This trace is also
done by steepest descents and implies that the closed loop is in fact periodic [1–3]. Periodic
solutions to (4) are known as worldline instantons [13]. From (6), the integration over x

(0)
‖

yields a factor
∫

dx
(0)
‖

/
ẋ

(0)
‖ = Tc/2 (reparametrization invariance of the periodic orbit), while

the x
(0)
⊥ integral produces another determinant factor. Remarkably, this determinant factor

combines with the remaining transversal determinant factor in (6) to give

det
(

∂2S(x,x ′;m2)

∂x⊥∂x⊥
+ ∂2S(x,x ′;m2)

∂x ′
⊥∂x⊥

+ ∂2S(x,x ′;m2)

∂x⊥∂x ′
⊥

+ ∂2S(x,x ′;m2)

∂x ′
⊥∂x ′

⊥

)
det

(
∂2S(x,x ′;m2)

∂x⊥∂x ′
⊥

) = det

(
∂(p⊥ − p′

⊥, x⊥ − x ′
⊥)

∂(x ′
⊥, p′

⊥)

)

=: det(1 − J ), (7)

where all determinants are evaluated at vanishing transverse displacements. Here J is the
monodromy matrix, for a six-dimensional surface of section in phase-space transverse to the
periodic phase-space orbit with constant energy E = m2. Consider an initial transverse
displacement

(
δx ′

⊥
δp′

⊥

)
from a point on the closed orbit in phase space, and evolve for time T,

and the final displacement from the orbit is related to the initial one by the monodromy matrix:(
δx ′′

⊥
δp′′

⊥

) = J
(
δx ′

⊥
δp′

⊥

)
. Putting all these parts together, and collecting phases carefully [13], one

obtains a compact final expression:

Im� ≈ e−S(E=m2)

√
det (1 − J )

. (8)

The principal advantage of expressing the computation in this language of the Gutzwiller trace
formula is that the total prefactor is encapsulated in a single determinant, which moreover has
a natural mathematical and geometrical meaning in the Euclidean phase space. In previous
work [10, 11, 13], the various prefactor contributions have been evaluated separately, and then
combined at the end. Thus, the computational strategy is as follows.

(1) Solve the classical equations of motion in four-dimensional Euclidean space to find all
closed periodic trajectories of energy E = m2: the ‘worldline instanton(s)’.

(2) Evaluate the classical action S(E = m2) on these trajectories. The dominant contribution
comes from the trajectory(ies) with largest e−S(m2).

(3) Compute the prefactor from the monodromy matrix J for the dominant trajectory(ies).

The only concrete comparison we can make is to compute Im� for the case of a one-
dimensional inhomogeneity, which can be computed in several other ways [10, 11, 13].
Consider, for example, the case of a time-dependent electric field directed in the x3 direction.
We can choose a Euclidean gauge field A3(x4) = E

ω
f (ωx4), where E characterizes the overall
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magnitude of the associated electric field, ω characterizes the scale of the time dependence
and f (ωx4) is some smooth function. For example, for a constant electric field E(t) = E , we
have f (x) = x; for a sinusoidal electric field E(t) = E cos(ωt), we have f (x) = sinh(x);
and for a single-pulse electric field E(t) = Esech2(ωt), we have f (x) = tan(x). Then the
classical action on a periodic trajectory of energy E can be written as (here, y := eE

ω
√

E
f (x))

S(E) =
∮

dx4

√
E −

(
eE
ω

f (ωx4)

)2

= 2E

eE

∫ 1

−1
dy

√
1 − y2

f ′(x(y))
. (9)

This is precisely the exponent appearing in the standard result for the pair production rate
[10, 11, 13]. To evaluate the prefactor, we can choose x4 as x‖. Then the transverse x3

direction is in fact an invariant ‘flat’ direction, so we do not need to perform the transverse
integration. This illustrates the important point that (8) must be interpreted appropriately when
there are physical zero modes. Thus, we go back to (5) and observe that ∂2R

∂T 2 = −1
/

∂2S
∂E2 .

Furthermore, the other determinant factor in (5) is easily computed (see [13]b) using the
Gel’fand–Yaglom formula:

det

(
∂2R

∂x∂x ′

)∣∣∣∣
x=x ′

= m4

16E3T 2

1

ẋ2
4

(
∂2S
∂E2

)2 . (10)

Thus, relative to the constant spatial volume V3,

Im �

V3
≈

√
2π

2(4π)2m


 e−S(E)

∂S
∂E

√
∂2S
∂E2




E=m2

. (11)

Note that (11) agrees precisely with the conventional WKB result [10, 11, 13].
We now turn to a multi-dimensional example. Consider the two-dimensional Euclidean

problem (4) in the x3–x4 plane, with F34 ≡ F(r), where r :=
√

x2
3 + x2

4 . The associated
Minkowski electric field points along the x3-axis and is a function of

√
t2 − x2

3 , i.e. a
configuration studied, e.g., in [19]. There can exist circular orbits centered around r = 0.
The fluctuation determinant for fluctuations around such an orbit of radius r0 follows from the
corresponding monodromy matrix J . In polar coordinates the circular orbit is characterized
by r(τ ) = r0, and θ̇ (τ ) ≡ θ̇0 = 2F0 := 2F(r0). Linearizing the equations of motion
in fluctuations ρ and ϑ around the periodic trajectory, where r(τ ) =: r0 + ρ(τ) and
θ(τ ) =: θ0(τ ) + ϑ(τ), and solving the resulting equations for the intial conditions ρ(0) = δx ′

⊥
and ρ̇(0) = δp′

⊥, leads to the following solution for the radial fluctuations:

ρ = δx ′
⊥ cos(2τF0σ) + δp′

⊥(2F0σ)−1 sin(2τF0σ). (12)

Here σ := [
1 + r0

F0
(∂r |r0F)

]1/2
, and we made use of ρθ̇0 = ϑ̇r0, which follows from the

conservation of the magnitude of the velocity
√

ẋ2
3 + ẋ2

4 . To compute the transverse deviation
from the orbit after one cycle, in principle, we have to calculate the time needed in order to
return to the same longitudinal coordinate (δx‖ = 0), which here means θ(T + δT ) := 2π ,
where T = π/F0 is the period of the unperturbed orbit. Putting into equation ((12)) τ =
T + δT , instead of τ = T , however, leads merely to corrections quadratic in the initial
fluctuation parameters δx ′

⊥ and δp′
⊥. Therefore, δq ′′

⊥ = ρ(T ) and δp′′
⊥ = ρ̇(T ). Then the

monodromy matrix is

J =
(

cos(2πσ) 2F0σ sin(2πσ)

−(2F0σ)−1 sin(2πσ) cos(2πσ)

)
. (13)

The corresponding fluctuation determinant is given by det(1 − J ) = 4 sin2(πσ).
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We conclude with some comments and open problems. For example, a class of multi-
dimensional problems that is now accessible to study is that of static electric fields with
A4 = A4(�x). (i) Finding closed periodic orbits to (4) is non-trivial, but recasting the problem
in phase space proves helpful. (ii) If the physical electric field is too localized in space, then
we know physically that the pair production rate vanishes (since the virtual vacuum dipole
pairs cannot gain enough energy from the field to become real electron–positron pairs). In
simple cases this corresponds to the non-existence of periodic classical Euclidean trajectories
[13]. It would be interesting if this were more generally true: that the mere existence of such
worldline instanton loops might be used as an indicator of pair production. (iii) The phases
arising from the steepest descent integrals combine to give Im� in the cases where the electric
field is a function of either t or �x [13], but the general mixed case needs further analysis. (iv)
If the gauge field corresponding to the external field can be put into the nonlinear gauge where
A2

µ(x) = constant (≡E), then we can solve the simpler first-order equations ẋµ = −2eAµ(x),
as was observed long ago by Nambu [20]1. (v) It would be interesting to extend our method
to inhomogeneous non-Abelian fields, for which little is known beyond simple quasi-Abelian
cases. This suggests studying the Wong equations [21] describing the classical motion of a
color-charged particle in a non-Abelian background, which is a much richer mathematical
system.

Acknowledgments

We gratefully acknowledge discussions with H Gies, Q-h Wang, B Tekin, M Lohe and
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[10] Brézin E and Itzykson C 1970 Pair production in vacuum by an alternating field Phys. Rev. D 2 1191
Popov V S 1972 Pair production in a variable external field (quasiclassical approximation) Sov. Phys.—

JETP 34 709
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